

Note: Slides complement the discussion in class

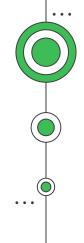
Overview

Table of Contents

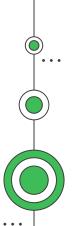
Terminology in the context of directed graphs

Reachability

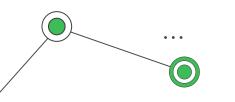
Reaching every vertex



Terminology in the context of directed graphs



4

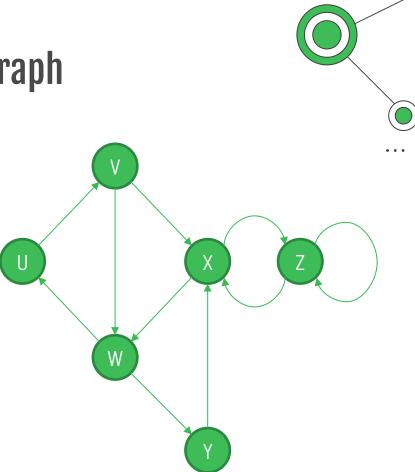


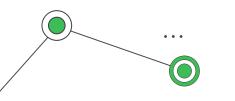
Directed Graph

A **directed graph** (AKA. **Digraph**) is a graph whose all edges are directed.

The **in-degree** of a vertex is the number of edges pointing to the vertex.

The **out-degree** of a vertex is the number of edges pointing away from the vertex.





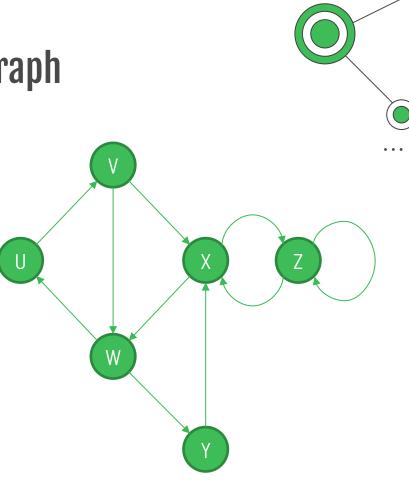
Directed Graph

A **directed path** is a sequence of vertices in a digraph such that there is a directed edge from each vertex to the next vertex in the sequence (e.g., {U, V, W, Y, X})

A **directed cycle** is a directed path whose first and last vertices are the same.

Simple (path or cycle): no repeated vertices or edges.

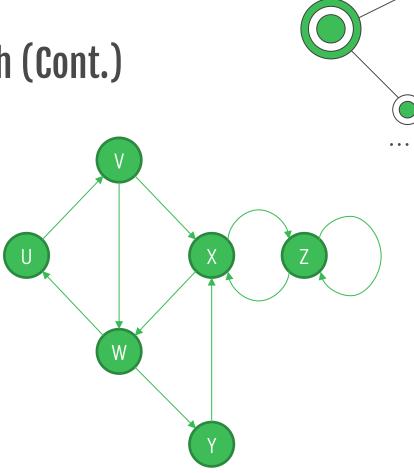
Length (of path or cycle): number of edges.



A **simple digraph** has no parallel edges and no self-loops. Note: $(u, v) \neq (v, u)$

In a simple digraph, $|E| \leq |V|(|V| - 1)$

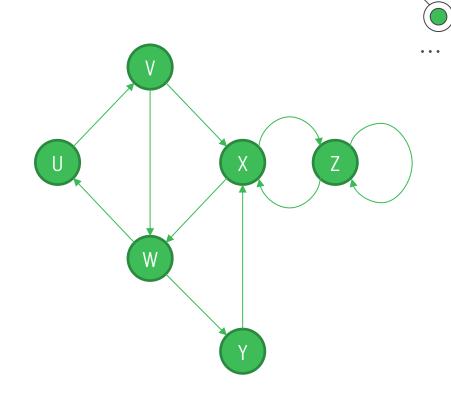
. . .

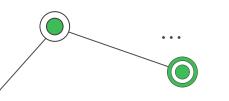


Example: Adjacency Matrix

	U	V	W	X	Y	Z
U	0	1	0	0	0	0
V	0	0	1	1	0	0
W	1	0	0	0	1	0
X	0	0	1	0	0	1
Y	0	0	0	1	0	0
Ζ	0	0	0	1	0	1

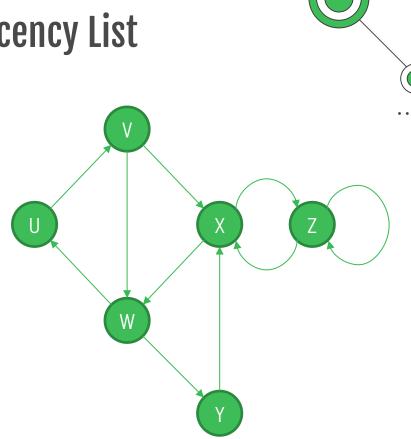
. . .

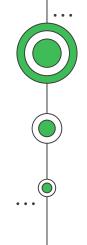




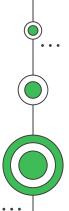
Example: Adjacency List

U	V		
V	W, X		
W	U, Y		
X	W, Z		
Y	Х		
Z	X, Z		

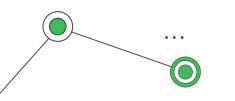




Reaching every vertex



10

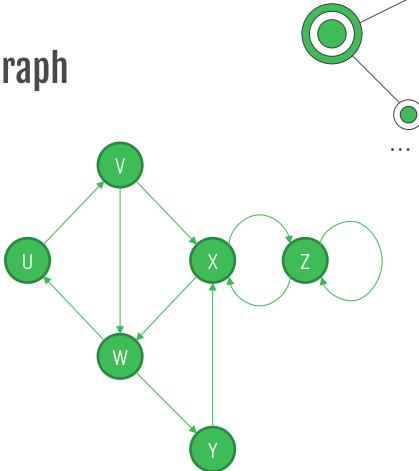


Directed Graph

The edge (u, v) means that the edge is going out of u and into v.

A vertex v is reachable from vertex u iff there is a directed path from u to v.

Example: Is Y reachable from Z?

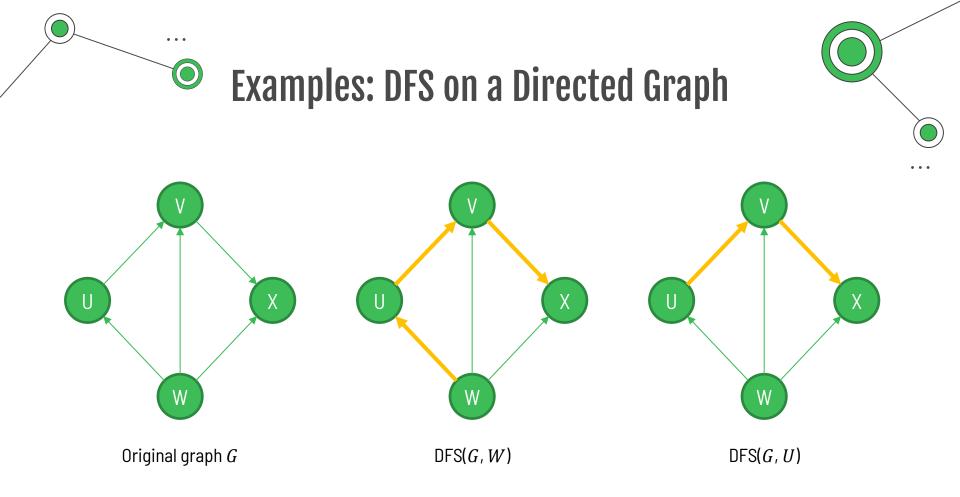


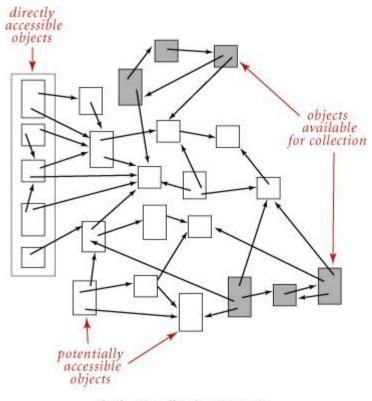
Single Source Reachability

Given a digraph $G = \{V, E\}$ and a source vertex $v \in V$, determine if there is a directed path from v to a destination vertex $t \in V$.

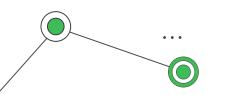
Solution: Use Directed DFS, which is the same old classical DFS but running on a digraph.

Note: In digraphs, connected does not imply reachability.





Garbage collection scenario



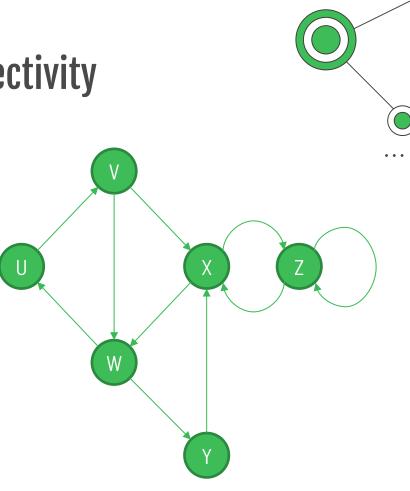
Strong Connectivity

A graph is **strongly connected** if every vertex is reachable from every other vertex (analogous to the idea of connectivity in an undirected graph.)

How can we determine if a graph is strongly connected or not?

Solutions:

- Run DFS on every edge and check all nodes are visited.
- Work smarter, not harder.

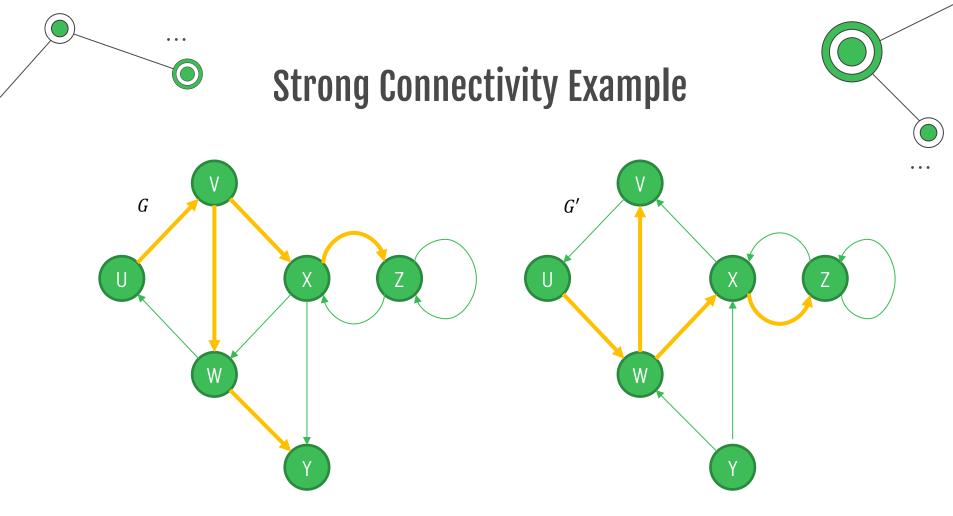




. . .

- Pick a vertex v in G.
- Perform DFS(G, v)
- If there is a vertex *w* not visited, then return false
- Let G' be G with edges reversed.
- Perform DFS(G', v)
- If there is a vertex *w* not visited, then return false. Else, return true.

Runtime: O(|V| + |E|)



Strong Connectivity Properties

Reflexive

Every vertex is strongly connected to itself.

Symmetric

If v is strongly connected to u, then u is strongly connected to v.

Transitive

If v is strongly connected to u, and u is strongly connected to w, then v is strongly connected to w.

We're Done

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories